
International Journal of Theoretical Physics, Vol. 20, No. 5, 1981 

Gravitational Field of a Sphere Composed 
of Concentric Shells 

A. L. Mehra 

Department of Mathematics, Government College, Ajmer 305001, India 

Received June 5, 1980 

A general solution of the field equations of general relativity theory has been 
obtained for a composite sphere having a number of concentric shells of different 
densities. 

1. INTRODUCTION 

We have some particular solutions (Tolman, 1939; Wyman, 1949; 
Buchdal, 1964; Kuchowicz, 1966; Mehra, 1966; Adler, 1974)which describe 
the interior gravitational field of spherically symmetric static bodies having 
variable densities. In general relativity it is very difficult to get an analytic 
solution of the field equations for any kind of variable density. Mehra 
(1968) and Mehra, Vaidya, and Kushwaha (1969) therefore have given the 
simple device to describe the interior gravitational field of bodies having 
any kind of variable densities. Accordingly, the body may be considered as 
a composite sphere having a number of concentric shells, one above the 
other, of different densities. The number of shells and their densities may be 
taken according to the distribution of matter in the body. This device has 
also been used by Bohra and Mehra (1971), Durgapal and Gehlot (1969), 
Durgapal (1971, 1972), Gehlot and Durgapal (1971), Durgapal (1974), Krori 
(1970, 1971), and Krori and Borgohain (1974). They have assumed two or 
three density distributions in the bodies. 

In this paper the same device has been used to obtain another general 
solution of the field equations to describe the interior gravitational field of 
spherically symmetrical static bodies having any kind of variable density. 
Here we consider different variable densities in shells. The following general 
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assumptions are made here for solving the field equations: 
(a) The constant density p 0 is in the core having radius R 0 and variable 

densities K l / r 2 ,  K 2 / r 2 , . . . , K n / r  2 are in n shells having outer radii 
R1, R 2 , . . . ,  Rn,  respectively. Here K1, K 2 . . . . .  K n are constants which must 
satisfy the following condition: 

K 1 >K2 > K  3 > �9  > K  n 

(b) The space is empty outside the radius Rn, i.e., the gravitational field 
outside the body is described by the well-known Schwarzschild exterior 
solution. 

(c) The gravitational potentials e x and e v must be continuous every- 
where. 

(d) The pressure must be positive, finite, and continuous everywhere 
inside the body and zero at and outside the surface of the body. 

2. FIELD EQUATIONS AND THEIR SOLUTIONS 

The line element is given by 

(Is 2 =e"(~) dt 2 - eX(") dr 2 -- r 2 dO 2 - r2 sin2O ddp 2 (1) 

The resulting field equations for perfect fluid at rest are given by Tolman 
(1962) as 

8~rp=e -x + ~-~ r 2 

8~rp=e -x + 7 + -4- + ~ (3) 

87rp=e -x + - -  (4) 
r r 2 r 2 

where the prime denotes differentiation with respect to r. 
The solutions of the field equations (2)-(4) for the core, shells (Bohra 

and Mehra, 1971; Kuchowicz 1966), and outside the body are given below. 
For core 0<~r<R o, 

e -x  = 1 - 81rr 21o 0 /3  (5a) 

e ' =  A o - - B o ( 1 - 8 7 r r 2 0 o / 3 )  '/2 2 (58) 

P =  0_~ 3Bo(1- -8~rrZpo/3) l /2 -Ao  

A 0 --B0(1 -- 8~rr 200/3)1/2 (5c) 
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For shells R i < r<R~+t ,  

e - x  = 1 --  81rK i + C i / r ,  i =  1,2, 3 , . . . ,  n (6a) 

e ~ = ( A i Fi ..}_ Bi Xi5/2Ei )2/Xi2 (6b) 

(8~rKi- -1)  3 A i ( 2 X i f f i - F i ) +  2 B i X i S / 2 ( 2 E i  + Xiff~ ) 

8~p = Ci(l - X i )  CiXi A i F  i q-BiXi5/2E i 

where 

( 8q"(K i - 1)(1-X/) 

X i = r ( 8 r r K  i --  1 ) / C  i 

F~ = hypergeometric function F( - 1 + (1 - 8 ~rK~)-l/2, 

- 1 - ( 1 - - 8 ~ K i ) - 1 / 2 ;  - 3 / 2 ;  X/) 

(6c) 

E i = hypergeometric function F (3 /2  + (1 -- 8~rK t ) -  1/2, 3 /2  

- ( 1 - - 8 r r K i ) - ' / 2 ;  7/2;  Xi) 

ax, 

For outside R n <r<~ oo, 

e - x  = 1 - 2 M / r  (7a) 

e ~ = 1 - 2 M / r  (7b) 

p = 0  (7c) 

In the above solutions (5), (6), and (7), A 0, B o, A i, B i, Ci, and M are 
3n + 3 constants of integration. To determine these constants we have equal 
number of conditions of continuity of e x, e ~, andp  at r = R o ,  R1 ,  R 2 . . . .  , R ,  
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3. DETERMINATION OF CONSTANTS 

Applying the continuity of e x at r = R  0, R l, R2, . . . ,  R ,  successively, we 

B n =(1-2M/Rn)  1/2 {2SnL-Fn(Rn/Cn(1--Sn) 

where 

c~ = 8~Ro(3/q-R~po)/3 (8) 

Cj=8~rRj_I(Kj-Kj_1)+Cj,,, j = 2 , 3 , . . . ,  n (9) 

M=4~rR,K, - C . / 2  

=4~r R,K,  -I-Rn_l(Kn_l-Kn)--~ "'"ar'R'o(R2oPo/3-K1) (10) 

The constant M is, therefore, identifiable as mass of the body. The continu- 
ity of e" and p at r=R, gives 

A, = ( 1 - 2 M / R , )  '/2 X,{D, - 2 X , ~ E n  

--E,F,,(R,,/C,,(1-X,,)+I)}/F,D,, ~=R. (11) 

+I)}/Xa/2D.r=R. (12) 

Di = 2 x , ( < e , - < F 3 - S e ,  F, 

On applying both continuities of e" and p at r=Rn_l, R,_2,...,RI, R o 
successively, we have 

a,-,  = Ix,_, (A,(2 < e,_, x, - 2<~,_ ix ,_ , -  sze,_,  ) -  2 B, xy~ 

( e . < - l X ~ - , - < e ~ - , x . ) } / x s z ' s - , I r = . s  , (13) 

B,_ I = I { BsXy2(2E, ff~_ ~X,_ ~ - 2X, EsF,-,-- 5F,_ IE, ) 

+2A,(F, ff,_,X:_x--Fs_,ff, X,) }/X, X3/2D,_,Ir:,~._ ' (14) 

s = n - l , n - 2 ,  n--3,...,1 

have 
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A0= (3-8~rR2oPo){2AI(fflX1-FI)+B1X~/Z(3E1 +2/T1X1)} 

/16rrREo~ +(A1F1 + BIXIS/ZE1)/XI r=Ro (15) 

Bo= 3'/2(3-8~R2po)~/2{ZAl(fflX1-F,) 

+ B~X~/2(3E~ + 2JglX~) } /16~rg2~176 r=Ro 

(16) 

Thus we have determined the values of all the constants of integration. 
Hence e x, e", and p are continuous everywhere, which is necessary for the 
solution of physical significance. 

To obtain the positive pressure at the center which does not exceed 1/3 
of the density at the center, we must have 

2B o <Ao <3B o (17) 

If the pressure at the center is positive and does not exceed the density at 
the center, then we must have 

3Bo/Z<Ao <3B o (18) 

On satisfying the condition (18), the signals cannot propagate at a velocity 
greater than the velocity of light (Zeldovich, 1961). 

4. DISCUSSION 

Here we have obtained the general solution to describe the interior 
gravitational field of spherically symmetric body. Its particular solutions 
can be used to arrive at astronomical and cosmological facts of the heavenly 
bodies. The particular solution for n = 1 has been discussed by Gehlot and 
Durgapal (1971) and Krori (1971). 
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